

PCXDHMT2111A

VAN-HVE Series (Heat Reclaim Ventilator) [50/60 Hz]

Good quality air for every day

Controlling the necessary elements will improve the quality of ventilation.

Air conditioning load is reduced by heat recovery.

Airflow Control

Class 1 Ventilation

Both supply air and exhaust air are controlled by mechanical ventilation in order to achieve stable ventilation when required.

For common ventilation usage, Class 1 ventilation is able to meet the requirement.

"For example: Heat Reclaim Ventilator"

Class 2 Ventilation

System that uses mechanical ventilation for supply air and natural ventilation for exhaust air.

Class 2 ventilation is often used for specific purpose such as positively pressured room (Hospital Clean Room, Factory Clean Room).

> "For example: Mechanical Ventilation (Supply)"

Class 3 Ventilation

System that uses natural ventilation for supply air and mechanical ventilation for exhaust air.

Class 3 ventilation often being used at area with high odor generation such as kitchen and toilet.

"For example: Mechanical Ventilation (Exhaust)"

Fresh up Operation

By changing the airflow balance, positive pressure or negative pressure in a room can be achieved in order to prevent pollutants from entering or flowing out.

Supply fresh up operation increases the supply air volume to prevent pollutants from entering into the room.

For example, it keeps outdoor pollen and dust from entering when doors are opened or closed, or through gaps in windows.

Example: Convenience Stores

By positive pressure in the room, the entering of dirty outside air, odors and moisture when opening and closing of doorway is prevented.

Exhaust fresh up operation will increase exhaust air volume to prevent pollutants from flowing to other area.

For example, to prevent dirty air generated indoors from flowing out in through windows and doors, the indoor air is kept under negative pressure and discharged.

Example: Conference Room

By negative pressure in the room, contaminated air and moisture from the room is prevented from leaking into other areas.

Ventilation volume control with CO2 sensor interlocking

During increase in CO_2 level in the room, ventilation air volume will be increased to have higher air exchange in order to reduce the CO_2 level in room.

Change in CO₂ concentration in conference room (ppm) Meeting room size :40m2 1600 Even if the number of 1400ppm people decreases, if 1400 ventilation is off, high CO₂ concentration will not reduce much. 1200 Ventilation Ventilation Ventilation ON OFF ON 1000 CO₂ concentration Gradual decrease in CO2 as 800 ventilation is 550ppm turned on 600 Number of people Number of people Number of people in the room in the room 400 in the room 4 Person 4 Person 13 Person 200 **** ******** **** 10 11 12 13 14 9 15 16 17 18 Times of Dav

Experimental data: CO_2 concentration in the conference room. Closed conference rooms often tend to have stagnant air flow. In long meeting duration or meeting with full occupancy, the concentration of CO_2 increases due to the exhaled CO_2 from human and causes decrease in mind concentration. In order to achieve effective ventilation in short period, mechanical ventilation and natural ventilation should be combined to replace the air.

Image is for illustrative purpose

Equipped with a CO₂ sensor to automatically control the ventilation volume according to the CO₂ concentration.

Low airflow when there are low occupancy.

Air conditioner and ventilation system can be interlocked to provide even greater comfort and energy saving.

The system can be interlocked with Daikin air conditioners to provide energy saving ventilation solution for various situation.

Sensing sensor stop mode

In situation of no human occupancy is detected, the operation is turned off.

When the "Sensing sensor" installed on the air conditioner detects no occupancy in the room, the ventilation system and air conditioner system is turned off automatically to reduce energy wastage.

- During group controlling of air conditioner, no occupancy stop mode cannot be used. Please refer to VRV general catalogue for the target indoor units.
- During 24-hours ventilation mode is turned on, the normal operation mode is changed to 24-hours ventilation mode.
- Once the absence is detected and stopped, the operation will not be performed automatically again.

Pre-cooling / Pre-heating control

The operation of ventilation system is delayed during this mode.

During first start up of the air conditioner, the start up operation of ventilation system is delayed in order to reduce additional heat load from outside air. This will reduce power consumption for the air conditioner as well.

Auto-ventilation Mode Changeover Switching

Automatically switches the ventilation mode (Total Heat Exchange Mode/Bypass Mode) according to the operating status of the air conditioner.

When the cooling operation is required in winter, use of heat recovery ventilation is not efficient because the outdoor air temperature is normally lower than that of the indoor. Thus, the proper use of ventilation mode enhances the heating / cooling efficiency.

In addition by installing a humidity sensor (optional), automatic switching by heat (energy) or discomfort index is possible which further improves energy efficiency and comfort.

Nighttime free cooling operation

Nighttime free cooling operation is an energy-conserving function that works at night when air conditioners are off. By ventilating rooms containing office equipment that raises the room temperature, nighttime free cooling operation reduce the cooling load when air conditioners are turned on in the morning. It also alleviates feelings of discomfort in the morning caused by heat accumulated during the night.

efficiency.

Heat is discharged.

- When connected to air conditioners, operation of heat reclaim ventilator is controlled according to the set temperature, outside air temperature and room temperature.
- When using only ventilation unit, operation of heat reclaim ventilator is controlled according to the set temperature on remote controller.
- Nighttime free cooling operation is possible during air conditioners linked operation by centralized control.
- Nighttime free cooling operation is set to "off" in the factory settings, so if there is a need to turn on, please contact Daikin dealer

Improved installation method

- 1. Improved installation process by changing the dimension and shape of lifting lug
 - The nut dropout prevention structure eliminates the need to replace the lifting lug even when mounting upside down.
 - It also prevents the anti-vibration lifting lug from interfering with the equipment.
- 2. Improved duct installation process with new duct connector location
 - The duct connector is adjusted to be parallel to each other in order to ease duct installation process.
- 3. Improves controllability by input / output signals and simplifies various wiring work
 - Operation, ventilation volume, and ventilation mode can be switched by external contact input.
 - Output signal terminal for external dampers.
 - Output signal terminal for abnormal signals and filter signs.

This reduces the air conditioning load the next day thereby increasing Cold Indoo

The indoor accumulated heat is discharged at night.

The load is small so the temperature is rapidly reduced to a comfortable level *Interlocked operation with an air conditione

Ventilation related points to be taken into note during designing stage.

Office & Shoplot

Problem

- •Ventilation cannot be achieved by opening windows or doors.
- •No large windows or doors at the area.

No air movement due to low airflow.

In the case of windows and doors are located at the front only, there will be no air movement at the back of the shop. Air will be stagnant and not well ventilated.

Countermeasure plan

Heat Reclaim Ventilator must be installed to provide effective mechanical ventilation.

As a result, airflow is able to ventilate all areas of the shop.

REMOTE CONTROLLER & OPTION LIST

Standard remote controller:

- BRC1H62W/BRC1H62K

Optional remote controller:

- Navigation remote controller - BRC1E63

- Simplified remote controller - BRC2E61

(Optional controller are connectable with some function limitation.)

		BRC1H62W(K) BRC1E63 BRC2E6				
Function	Detail	. 25	E B C C C C C C C C C C C C C C C C C C			
Air conditioner interlock	Interlock Heat Reclaim Ventilator with air conditioner by one remote controller	•	•	٠		
Ventilation mode	Switch the ventilation mode (Automatic, Heat exchange, By pass)	•	•	-		
Ventilation airflow rate	When using CO_2 sensor, ventilation volume can be changed	•	•	٠		
Fresh up indication	Indicates that fresh up operation is being carried out	•	-	-		
CO ₂ indication	Indicates value of CO2 sensor	0	-	-		
Outdoor temperature indication	Indicates outdoor air temperature (OA)	0	-	-		
Nighttime free cooling indication	Show the night purge icon when is set	0	-	-		
24 hours ventilating indication	Show the icon when is 24hrs operation is set	0	-	-		
Ventilating operation indication	Indicates that ventilating operation is being carried out even when night purge operation and 24 hour ventilating operation is being carried out	•	•	-		
Ventilating standby indication	Indicates that ventilating operation has been stopped temporarily during pre-cool / pre-heat control	0		-		
Sharing CO ₂ data	Share the CO ₂ data to submit from main unit with in the group	0		-		

Additional functions:

Installed functions
 Additional Installation function

Option List:

Туре			ltem	VAM150HVE	VAM250HVE	VAM350HVE	VAM500HVE	VAM650HVE	
n al	Silonoc				-	KDDM2	24B100		
tio.	Silence	Nominal pipe	mm	-			φ	200	
ddi:	High ef	ficiency filter		KAF24	42J25M	KAF242J50M	KAF2	42J65M	
ج ۴	Air filter	r for replacement		KAF24	41J25M	KAF241J50M	KAF2	41J65M	
Flexible	e duct (1	m)		K-FDS101E	K-FI	DS151E	K-FD	S201E	
Flexible	e duct (2	2m)		K-FDS102E	K-FD	DS152E	K-FD	S202E	
CO ₂ se	ensor			BRYC	24A25M	BRYC24A35M	BRYC24A65M		
Humid	ity sense	or		BRYH241A100 (for RA) / BRYH242A100 (for OA)					
PM2.5	filtration	n unit		BAF249A150	BAF249A300	BAF249A350	BAF249A500	-	
PM2.5	with ac	tivated carbon filtration unit		BAF249A150C	BAF249A300C	BAF249A350C	BAF249A500C	-	
Wired	remote	controller		BRC1H62W (White) / BRC1H62K (Black) / BRC1E63 / BRC2E61					
	ed ng	Residential central remote c	ontroller	DCS303A51*1					
ice	alis ollii vice	Central remote controller		DCS302CA61					
Jev 1	antr dev	Unified ON/OFF controller		DCS301BA61					
b D	Ce Ce	Schedule Timer		DST301BA61					
l :≣	L	Wiring adaptor for electrical a	appendices	KRP2A62					
B B		Installation box for adaptor	KRP1C18A90						
Ö	dan dan	For heater control kit		BRP4A50A					
	a	PCB adaptor for wiring				KRP1C18			

	_									
Туре				ltem	VAM800HVE	VAM1000HVE	VAM1500HVE	VAM2000HVE		
-	0.1				KDDM24B100 KDDM24B100 x 2			/24B100 x 2		
iona	Slience		Nominal pipe	mm		φ2	50			
iditi unct	High eff	iciency filter	ŕ		×	AF242K100M	KAF24	2K100M x 2		
Ac fi	Air filter	for replace	ment		×	AF241K100M	KAF24	1K100M x 2		
Flexible	duct (1r	n)				K-FD	S251E			
Flexible	duct (2r	n)				K-FD	S252E			
CO ₂ se	nsor					BRYC2	4A100M			
Humidi	ty senso	r			BRYH241A100 (for RA) / BRYH242A100 (for OA)					
PM2.5	filtration	unit			BAF429A20A					
PM2.5	with acti	vated carbo	on filtration unit		BAF429A20AC					
Wired r	emote c	pntroller			BRC1H62W (White) / BRC1H62K (Black) / BRC1E63 / BRC2E61					
	ed ng	Residenti	al central remote o	controller	DCS303A51*1					
e	alis ollii rice	Central re	emote controller		DCS302CA61					
evic	ntr ntr dev	Unified O	N/OFF controller		DCS301BA61					
ğ	👸 👸 ິ Schedule Timer					DST301BA61				
trolling B	L	Wiring ada	aptor for electrical	appendices	KRP2A62					
	в g	Installation box for adaptor			KRP1C18A90					
Con	P(ada	For heater	control kit		BRP4A50A					
0	σ	PCB adap	otor for wiring		KRP1C18					

*1 For residential only. When connect with a Heat Reclaim Ventilator (VAM), you can only switch the power ON/OFF. It cannot be used with other central control equipment.

Air Treatment Equipment

Airflow rate control with CO2 sensor

The CO₂ sensor controls airflow rate so that it best matches the changes of CO₂ level in the room. This prevents energy losses from over-ventilation while maintaining indoor air quality with optional CO_2 sensor.

• Example of CO₂ sensor operation in an office room:

Automatic Ventilation Mode Swithching (Bypass control) with Humidity sensor

Suitable ventilation mode depending on condition will be switched automatically

The ventilation unit detects room temperature and outside air temperature, then automatically switches to suitable ventilation mode to provide higher energy-saving. By installing humidity sensor (optional item), the mode will be switched automatically based on the amount of heat (energy) and discomfort index to further improve energy saving and comfort. *1

TECHNICAL SPECIFICATIONS

Unit				-99-11	00-11					
	Model			VAM150HVE	VAM250HVE	VAM350HVE	VAM500HVE	VAM650HVE		
Power Supply	1				1-phase,	220-240 V / 220 V,	50/60 Hz			
	For	Ultra-High		66.0 / 66.0	60.5 / 60.5	65.0 / 65.0	61.5 / 61.5	59.5 / 59.5		
Temp. Exchange	Cooling	High	%	66.0 / 66.0	60.5 / 60.5	65.0 / 65.0	61.5 / 61.5	59.5 / 59.5		
		Low		69.0 / 69.5	65.0 / 65.5	70.0 / 70.0	63.0 / 64.0	62.5 / 63.0		
(50/60 Hz)	For	Ultra-High		77.0 / 77.0	76.5 / 76.5	79.5 / 79.5	80.0 / 80.0	74.5 / 74.5		
	Heating	High	%	77.0 / 77.0	76.5 / 76.5	79.5 / 79.5	80.0 / 80.0	74.5 / 74.5		
		Low		78.5 / 79.0	78.5 / 79.0	81.5 / 82.0	81.5 / 82.5	76.5 / 77.0		
	For	Ultra-High		63.5 / 63.5	60.0 / 60.0	62.5 / 62.5	62.5 / 62.5	60.0 / 60.0		
Enthalpy	Cooling	High	%	63.5 / 63.5	60.0 / 60.0	62.5 / 62.5	62.5 / 62.5	60.0 / 60.0		
Exchange Efficiency		LOW		66.0 / 66.5	61.5 / 62.0	64.5 / 65.0	64.0 / 65.0	62.5 / 63.0		
(50/60 Hz)	For	Ultra-High	04	/1.5 / /1.5	69.5 / 69.5	72.0 / 72.0	71.0 / 71.0	68.0 / 68.0		
	Heating	High	70	71.5771.5	69.5 / 69.5	72.0772.0	71.0771.0	68.0 / 68.0		
		LOW		/0.5///.0	126 141 / 172	179 102 / 221	72.5773.5	09.5 / / 1.5		
	Heat	High	w/	90-103 / 132	120-1417172	163-170 / 207	248-261 / 329	307-319 / 412		
Power	Mode	Low		68-73 / 67	75-83 / 79	132-1/2 / 1/5	223-233 / 268	264-276 / 332		
Consumption		Liltra-High		96-103 / 132	126-1/1 / 172	178-193 / 231	296-326 / 390	381-426 / 472		
(50/60 HZ)	Bypass	High	w	90-93 / 118	114-123 / 144	163-170 / 207	248-261 / 329	307-319/413		
	Mode	Low		68-73 / 67	75-83 / 79	132-142 / 145	223-233 / 268	264-276 / 332		
		Ultra-High	dB(A)	33.0-34.0 / 34.0	33.0-34.0 / 33.5	32.0-33.0 / 34.5	36.0-37.0 / 38.5	37.5-38.0 / 38.0		
	Heat	High		30.5-32.0 / 28.0	31.0-32.5 /28.0	30.0-31.5 / 27.5	35.0-36.0 / 35.0	36.0-36.5 / 37.0		
Sound Level	Mode	Low		23.0-25.5 / 20.0	23.0-25.5 / 21.0	26.5-28.5 / 22.0	32.0-34.0 / 31.0	34.0-35.0 / 32.5		
(50/60 Hz)		Ultra-High		33.5-34.0 / 36.0	33.0-34.0 / 34.5	32.5-33.5 / 34.5	36.0-37.0 / 38.5	39.5-40.0 / 42.0		
	Bypass	High	dB(A)	31.5-33.0 / 28.5	31.5-32.5 / 29.0	31.0-32.0 / 27.5	35.0-36.0 / 35.0	38.0-38.5 / 39.0		
	Mode	Low		23.0-25.5 / 20.5	23.5-25.5 / 21.5	27.0-29.0 / 23.0	32.0-34.0 / 31.0	35.5-36.5 / 33.5		
Casing				Galvanised steel plate						
Insulation Mater	rial			Self-extinguishable polyurethane foam						
Dimensions (H)	(W x D)		mm	278 x 5	51 x 810	306 x 800 x 879 338 x 832 x 973				
Machine Weight	:		kg	22	22	31	41	43		
Heat Exchange	System			A	Air to air cross flow tota	al heat (Sensible heat	+ latent heat) exchang	je		
Heat Exchange	Element Mat	erial		Specially processed nonflammable paper						
Air Filter				Multidirectional fibrous fleeces						
	Туре					Sirocco fan				
	Airflow	Ultra-High		150 / 150	250 / 250	350 / 350	500 / 500	650 / 650		
	Rate	High	m³∕h	150 / 150	250 / 250	350 / 350	500 / 500	650 / 650		
Fan	(50/60 Hz)	Low		100 / 80	165 / 145	275 / 235	470 / 420	570 / 495		
	External Static	Ultra-High		125-140 / 155	115-130 / 135	170-185 / 230	165-190 / 245	185-190 / 260		
	Pressure	High	Ра	100-120 / 100	80-90 / 60	145-165 / 80	140-175 / 180	140-155 / 210		
	(50/60 Hz)	Low		44-80 / 28	35-75 / 20	90-102 / 36	124-155 / 127	108-119 / 122		
	Motor Out	put	kW	0.03	0 x 2	0.060 x 2	0.100 x 2	0.170 x 2		
Net Supply Airfl	ow Ratio	Ultra-High	%	90	90	90	90	90		
Connection Duc	t Diameter	Indoor side Outdoor side	mm mm	φ100	φ150	φ150	φ200	φ200		
Unit Ambient Condition					-1:	5°C—50°C DB, 80%R	H or less			

 Values for electrical current, power consumption, and efficiency are at the above above-stated airflow.
 Exchange efficiencies are values based on performance codes and air conditions that comply with JIS B8628:2017.
 Temperature exchange efficiency and enthalpy exchange efficiency vary according to the ratio of supply air and exhaust air and air conditions.
 Operation sound is an anechoic chamber conversion that complies with JISB8628:2017. When measured under actual installation conditions, the operation sound is usually greater due to ambient noise and reverberation.
* Since the sound level of this specification is the noise level at the rated external static pressure, it will be higher on the display than the G type model as the external static pressure improves.

TECHNICAL SPECIFICATIONS

	Unit								
1	Model			VAM800HVE	VAM1000HVE	VAM1500HVE	VAM2000HVE		
Power Supply				1-phase, 220-240 V / 220 V, 50/60 Hz					
Temp. Exchange	E.u.	Ultra-High		61.5 / 61.5	58.0 / 58.0	61.5 / 61.5	58.5 / 58.5		
	For Cooling	High	%	61.5 / 61.5	58.0 / 58.0	61.5 / 61.5	58.5 / 58.5		
		Low		64.0 / 65.0	61.5 / 62.0	65.5 / 66.0	65.5 / 65.5		
(50/60 Hz)	For	Ultra-High		77.5 / 77.5	74.0 / 74.0	77.5 / 77.5	73.5 / 73.5		
	Heating	High	%	77.5 / 77.5	74.0 / 74.0	77.5 / 77.5	73.5 / 73.5		
		Low		78.5 / 79.5	76.0 / 76.5	79.5 / 80.0	76.5 / 77.0		
	E	Ultra-High		63.0 / 63.0	60.0 / 60.0	63.0 / 63.0	60.0 / 60.0		
Enthalov	For	High	%	63.0 / 63.0	60.0 / 60.0	63.0 / 63.0	60.0 / 60.0		
Exchange	Ŭ	Low		64.5 / 65.5	62.0 / 62.5	65.5 / 66.0	64.5 / 64.5		
Efficiency		Ultra-High		72.0 / 72.0	68.5 / 68.5	72.0 / 72.0	68.0 / 68.0		
(30/00 112)	For Heating	High	%	72.0 / 72.0	68.5 / 68.5	72.0 / 72.0	68.0 / 68.0		
	liouting	Low		74.0 / 75.0	72.0 / 72.5	74.0 / 75.0	71.0 / 71.5		
	Heat	Ultra-High		644-684 / 829	683-736 / 883	1,274-1,353 / 1,645	1,365-1,471 / 1,763		
	Exchange	High	W	603-612 / 712	621-656 / 763	1,207-1,225 / 1,423	1,241-1,311 / 1,526		
Power	Mode	Low		504-544 / 562	539-569 / 594	1,008-1,089 / 1,125	1,079-1,138 / 1,188		
(50/60 Hz)		Ultra-High	w	644-684 / 829	683-736 / 883	1,274-1,353 / 1,645	1,365-1,471 / 1,763		
	Bypass Mode	High		603-612 / 712	621-656 / 763	1,207-1,225 / 1,423	1,241-1,311 / 1,526		
		Low	1	504-544 / 562	539-569 / 594	1,008-1,089 / 1,125	1,079-1,138 / 1,188		
		Ultra-High		41.5-42.5 / 41.0	42.0-43.0 / 42.5	43.0-44.0/ 44.0	43.5-44.0 / 44.5		
	Heat Exchange	High	dB(A)	39.5-41.0 / 37.0	40.0-41.0 / 38.0	41.0-42.5 / 39.0	41.5-43.0 / 40.0		
Sound Level	Mode	Low		36.0-38.5 / 33.0	38.0-39.5 / 34.5	38.0-40.5 / 35.0	39.0-41.0 / 36.5		
(50/60 Hz)		Ultra-High		41.5-42.5 / 41.0	42.0-43.0 / 42.5	43.0-44.0 / 44.0	43.5-44.0 / 44.5		
	Bypass Mode	High	dB(A)	39.5-41.0 / 37.0	40.0-41.0 / 38.0	41.0-42.5 / 39.0	41.5-43.0 / 40.0		
		Low		36.0-38.5 / 33.0	38.0-39.5 / 34.5	38.0-40.5 / 35.0	39.0-41.0 / 36.5		
Casing				Galvanised steel plate					
Insulation Materi	al			Self-extinguishable polyurethane foam					
Dimensions (H x	W x D)		mm	387 x 1,0	12 x 1,110	785 x 1,012 x 1,110			
Machine Weight			kg	6	3	133			
Heat Exchange S	System			Air to air	cross flow total heat (Sens	ible heat + latent heat) ex	change		
Heat Exchange E	lement Mat	erial			Specially processed	nonflammable paper			
Air Filter					Multidirectional	fibrous fleeces			
	Туре				Siroco	o fan			
		Ultra-High		800 / 800	1,000 / 1,000	1,500 / 1,500	2,000 / 2,000		
	Airflow Bate	High	m³/h	800 / 800	1,000 / 1,000	1,500 / 1,500	2,000 / 2,000		
	(50/60 Hz)	Low		720 /610	880 / 835	1,350 / 1,250	1,650 / 1,580		
Fan	External	Ultra-High		210-235 / 250	205-225 / 220	195-215 / 235	190-210 / 210		
	Static	High	Ра	170-215 / 140	155-195 / 100	150-180 / 125	140-180 / 85		
	(50/60 Hz)	Low		138-174 / 81	115-150 / 70	123-146 / 88	96-123 / 53		
	Motor Out	put	kW	0.19	0 x 2	0.19	90 x 4		
Net Supply Airflo	w Ratio	Ultra-High	%	90	90	90	90		
		Indoor side	mm			φ250×4	φ250×4		
Connection Duct	Diameter	Outdoor side	mm	φ250	φ250	$\Box(680 \times 290) \times 2$	□(680×290)×2		
Unit Ambient Condition						, 80%RH or less			

* Values for electrical current, power consumption, and efficiency are at the above above-stated airflow.
 * Exchange efficiencies are values based on performance codes and air conditions that comply with JIS B8628:2017.
 * Temperature exchange efficiency and enthalpy exchange efficiency vary according to the ratio of supply air and exhaust air and air conditions.
 * Operation sound is an anechoic chamber conversion that complies with JISB8628:2017. When measured under actual installation conditions, the operation sound is usually greater due to ambient noise and reverberation.

* Since the sound level of this specification is the noise level at the rated external static pressure, it will be higher on the display than the G type model as the external static pressure improves.

NEW TEST STANDARD

This new VAM-H is complying to latest international testing standard!

Revision of JIS standards

Corresponds to the new JIS standard (JIS B8628:2017) With the establishment of the international standard (ISO 16494) for total heat exchangers (2014), the JIS standard was also revised. (December 20, 2017).

International standard for total heat exchangers was established in 2014 (ISO 16494).

- Each country's standard was reviewed based on the international standard.
- In Japan, JIS standards were revised to comply with international standards.

Revision of JIS Standards (JIS B8628:2017)

Stricter standards!

If the new JIS is applied to current products, the total heat exchange efficiency and effective ventilation volume will be lower than the values indicated.

Comparison of old and new JIS standards

Item		Old JIS	New JIS
	Air volume	Static pressure conditions are optional.	Static pressure conditions are specified.
Measurement method	Total heat exchange conditions Temperature and humidity conditions at the time of measurement.	DB temperature: Reference value ± 1°C WB temperature: Standard value ± 2°C	DB temperature: Reference value ± 0.3°C WB temperature: Standard value ± 0.2°C
	Effective ventilation efficiency	Only internal leakage of the product can be measured.	Internal leakage + external leakage of the product to be measured
Notation on specification sheet		Not applicable	Yes

Due to stricter standards, when the new JIS is applied to current products, the total heat exchange efficiency and effective ventilation rate may be lower than the values indicated.

REFERENCE

(Temperature / Enthalpy Exchange Efficiency and Sound level are based on the measurement conditions of the VAM-G type model)

	Unit								
	Model			VAM150HVE	VAM250HVE	VAM350HVE	VAM 500HVE	VAM650HVE	
	_	Ultra-High		78.0 / 78.0	68.5 / 68.5	76.0 / 76.0	70.5 / 70.5	68.5 / 68.5	
Temp.	For Cooling	High	%	78.0 / 78.0	68.5 / 68.5	76.0 / 76.0	70.5 / 70.5	68.5 / 68.5	
Exchange	g	Low		81.0 / 81.5	73.0 / 73.5	81.0 / 81.0	72.0 / 73.0	71.5 / 72.0	
Efficiency (50/60 Hz)	Гол	Ultra-High		86.0 / 86.0	82.5 / 82.5	87.5 / 87.5	87.0 / 87.0	81.5 / 81.5	
(00,001.12)	Heating	High	%	86.5 / 86.0	82.5 / 82.5	87.5 / 87.5	87.0 / 87.0	81.5 / 81.5	
		Low		87.5 / 88.0	84.5 / 85.0	89.5 / 90.0	88.5 / 89.5	83.5 / 84.0	
	F	Ultra-High		76.5 / 76.5	66.0 / 66.0	73.5 / 73.5	70.5 / 70.5	66.0 / 66.0	
Enthalpy	For Cooling	High	%	76.5 / 76.5	66.0 / 66.0	73.5 / 73.5	70.5 / 70.5	66.0 / 66.0	
Exchange		Low		79.0 / 79.5	67.5 / 68.0	75.5 / 76.0	72.0 / 73.0	68.5 / 69.0	
Efficiency	_	Ultra-High		81.5 / 81.5	75.5 / 75.5	81.0 / 81.0	78.0 / 78.0	74.0 / 74.0	
(30/00 112)	For Heating	High	%	81.5 / 81.5	75.5 / 75.5	81.0 / 81.0	78.0 / 78.0	74.0 / 74.0	
	J	Low		86.5 / 87.0	79.0 / 79.5	83.5 / 84.0	79.5 / 80.5	75.5 / 77.5	
	Heat	Ultra-High		30.5 - 31.5 / 31.5	30.5 - 31.5 / 31.0	31.5 - 33.0 / 33.5	35.0 - 37.0 / 36.0	36.0 - 36.5 / 38.0	
Sound Level (50/60 Hz)	Exchange	High	dB(A)	29.5 - 31.0 / 27.0	29.0 - 30.0 / 27.0	30.5 - 32.0 / 27.5	33.0 - 35.5 / 33.0	34.0 - 34.5 / 35.5	
(30/00 112)	Mode	Low		24.0 - 24.5 / 19.0	22.5 - 24.5 / 20.0	28.0 - 29.5 / 23.5	30.0 - 31.5 / 28.5	32.0 - 32.5 / 30.0	

	Unit Model			VAM800HVE	VAM1000HVE	VAM 1500HVE	VAM2000HVE
		Ultra-High		69.5 / 69.5	64.0 / 64.0	69.5 / 69.5	64.5 / 64.5
Temp	For Cooling	High	%	69.5 / 69.5	64.0 / 64.0	69.5 / 69.5	64.5 / 64.5
Exchange		Low		72.0 / 73.0	67.5 / 68.0	73.5 / 74.0	71.5 / 71.5
Efficiency (50/60 Hz)	Fer	Ultra-High		83.5 / 83.5	79.0 / 79.0	83.5 / 83.5	78.5 / 78.5
(00,00112)	Heating	High	%	83.5 / 83.5	79.0 / 79.0	83.5 / 83.5	78.5 / 78.5
		Low		84.5 / 85.5	81.0 / 81.5	85.5 / 86.0	81.5 / 82.0
		Ultra-High		69.0 / 69.0	64.0 / 64.0	69.0 / 69.0	64.0 / 64.0
Enthalov	For Cooling	High	%	69.0 / 69.0	64.0 / 64.0	69.0 / 69.0	64.0 / 64.0
Exchange	Ű	Low		70.5 / 71.5	66.0 / 66.5	71.5 / 72.0	68.5 / 68.5
Efficiency		Ultra-High		79.0 / 79.0	73.5 / 73.5	79.0 / 79.0	73.0 / 73.0
(30/00 112)	For Heating	High	%	79.0 / 79.0	73.5 / 73.5	79.0 / 79.0	73.0 / 73.0
	J	Low		81.0 / 82.0	77.0 / 77.5	81.0 / 82.0	76.0 / 76.5
	Heat	Ultra-High		40.5 - 41.5 / 40.0	40.5 - 42.0 / 40.5	41.5 - 43.0 / 42.5	42.0 - 42.5 / 43.0
Sound Level (50/60 Hz)	Exchange	High	dB(A)	38.5 - 40.0 / 37.0	39.0 - 40.0 / 37.5	40.0 - 42.0 / 38.0	40.5 - 42.0 / 39.0
	wode	Low		35.0 - 37.5 / 33.0	36.5 - 38.0 / 35.0	37.5 - 39.5 / 34.0	39.0 - 40.5 / 36.0

The exchange efficiency (temp exchange / enthalpy exchange) and sound level are based on the measurement conditions of the VAM-G type model.
 The exchange efficiency (temp / enthalpy) is a value calculated under the test condition according to JIS B8628: 2003 with the external static pressure conditions that are close to actual use. The value will subject to change depending on the room condition and environment.

- The sound level is the value measured with the external static pressure condition of the VAM-G type model.
 G-type model: Measured under static pressure load conditions due to duct pressure loss under certain conditions.
 H-type model: A air damper is installed in the duct, and the static pressure is adjusted to the rated external static pressure for measurement.

Dealer

DAIKIN MALAYSIA SDN. BHD.

Lot 60334, Persiaran Bukit Rahman Putra 3, Taman Perindustrian Bukit Rahman Putra, 47000 Sungai Buloh, Selangor Darul Ehsan, Malaysia. www.daikinmalaysia.com

DAIKIN INDUSTRIES, LTD.

Head office: Umeda Center Bldg., 2-4-12, Nakazaki-Nishi, Kita-Ku, Osaka, 530-8323 Japan.